
Achieving Transparent Integration of Information, Documents and Processes

Jingzhi Guo
Faculty of Science and Technology, University of Macau,

Av. Padre Tomás, Pereira, S.J., Taipa, Macau, Tel: +853-397 4890
Email: jzguo@umac.mo

Abstract

Business interoperation is important especially in elec-
tronic business. It requires the integration of business in-
formation, business documents and business processes.
Nevertheless, while progress is made in these individual
integration aspects, the issue of how to integrate the inte-
grated results of business information, documents and
processes requires to be resolved, that is, the vertical in-
tegration of the already-integrated results. This paper
proposes a novel TRANSCODE approach to resolving
this issue. This approach first describes business informa-
tion, business documents and business processes in three
TRANSCODE Structures, and then implements, concep-
tualizes and reifies them in a three-layer TRANSCODE
Model, which is implemented in three XML specifications
that demonstrates the concept reusability and model flexi-
bility of TRANSCODE approach. Finally, the paper dis-
cusses its theoretic base and compares it with ebXML.

1. Introduction
Business interoperation is an important research topic

in electronic business [8], and has been studied in the in-
tegration fields of heterogeneous business information [4],
heterogeneous business documents [9], and heterogene-
ous business processes [13]. These researches all concern
a non-trivial issue, that is, two business entities are diffi-
cult to interoperate with each other to fulfill their shared
task due to the autonomous and heterogeneous computing
environments. Traditionally, solutions to this problem are
individually resolved in different levels. For example,
product information integration aims to make heterogene-
ous product information interoperable [1]. Business
document integration supports the alignment of heteroge-
neous business documents in a same document manage-
ment system (e.g. www.UDEF.org). Business process in-
tegration targets the coordination of the inconsistent proc-
esses from different companies [13]. While all these solu-
tions contribute to their individual research realms, an in-
teresting question is asked: how the integrated business
information could be effectively used in business docu-
ments and how the interoperable business documents
should be effectively utilized in business processes?

An integrated solution to integrating business informa-
tion, documents and processes is important [9]. It can in-

crease the reuse of existing business integration results
and save labor costs in business reengineering.

This paper aims to propose a novel transparent coding
(TRANSCODE) approach to vertically integrate business
information, business documents and business processes.
It is transparent because it allows the integrated business
information to be openly used in business document inte-
gration, which further to be openly utilized in business
process integration. Through this approach, the reuse of
integrated results is available.

Contributions of the paper are: (1) TRANSCODE rep-
resentation, which represents information, documents and
processes of businesses in three independent domains but
could be transparently referenced; (2) three-layer
TRANSCODE model, in which each domain could be
autonomously designed in its own way; and (3) three
XML specifications, which implement TRANSCODE
model for feasibility demonstration.

In the rest of this paper, TRANSCODE representations
are provided in Section 2. Section 3 presents a three-layer
TRANSCODE model for vertical integration solution. In
Section 4, the TRANSCODE model is implemented in
three XML specifications. Section 5 discusses and com-
pares the approach with some related work. The final sec-
tion summaries the paper and provides the future work.

2. TRANSCODE Representation
This section introduces the TRANSCODE representa-

tion to represent correlated integration domains of infor-
mation, documents and processes of businesses.

2.1. Business Information
Business information is the fundamental information

of a company such as products, assets, people and organi-
zation. It specifies the basic knowledge of a company. It
has the following characteristics:

Unit of concept. A piece of information can be repre-
sented as a unit of concept, which is a semantic unit hav-
ing a syntactic structure and semantic denotation [4], e.g.
given c(an) = “shoes”, the c(an)= “” is a structure while
“shoes” is a semantic denotation.

Hierarchically divisible. A concept is a node of a vec-
tor concept tree [3] that may be connoted by many lower
level concepts (i.e. connotation) [4], e.g. electron-
ics(refrigerator(price(currency, value, piece), color)).

Uniquely identifiable. Any concept is the result of a
given context [3], thus it is unique and can be uniquely
identified, e.g. refrigerator → C.52.14.15.1.

Strongly grouped. A concept belongs to a concept
group, e.g. refrigerator ∈ products, currency ∈ scalar type,
dozen ∈ unit type, 18.8 ∈ value type and “white” ∈ con-
stant type. The information group strongly affects the way
of how a concept to be reified in a specific context.

Possibly reified. A piece of concept could be reified as
a specific value, e.g. color→ white and cashier→David.

Strongly typed reification. A reified value of a concept
is always strongly typed, e.g. the value “David” of con-
cept “cashier” is strongly typed by “string”. A reification
may take a value of number, constant, scalar, or unit.

Numeric value scalar. A numeric value always has a
scalar for measuring the value, e.g. the “USD” in
USD2/pair or “person” in 10 persons per trip. An orphan
numeric value (e.g. 3 or 0.33) is meaningless in business.

Numeric value unit. A numeric value always at least
has one unit to refer to scaled value, e.g. “dozen” and
“pair” in USD10/dozen pair. If more units involved, they
can be converted to atomic valued units such as 24 piece
= 12 (a dozen) × 2 (a pair).

Conversion functions for scalar and unit. A scalar or a
unit may associates with a conversion function, e.g. Cur-
rency function for converting “USD” to other currency.
Conversion result affects the associated numeric value.

To be more operational, business information can be
represented in the following definition.
Definition 1 (Business Information Domain): BID

Given a business information domain BID, then BID is
a tuple BID = (C, V, AN, IID, G, CO, VAL, DT, CVT),
where:
- C is set of concept structure symbols.
- V is a set of meaningful concept vocabularies such

that V takes C as its form (i.e. C is syntactic structure)
and V is the meaning conveyed in C. The V consists
of the vocabularies of product information R, busi-
ness documents D, business processes P, organiza-
tion resources O, and other vocabularies V1, V2, …,
Vn such that V = {R, D, P, O, V1, V2, …, Vn}.

- AN ⊂ C is the symbol of annotation (i.e. denotation).
- IID ⊂ C is the symbol of unique concept identifier

such that AN IID. determine⎯⎯⎯→
- G ⊂ C is the symbol of concept group.
- CO ⊂ C is the symbol of connotation.
- VAL ⊂ C is the symbol of concept value structure

paired with C such that C takes VAL, notated as
C→VAL.

- DT ⊂ VAL is the symbol of data types of values.
- CVT ⊂ VAL is the symbol of conversion functions for

scalars, units and numeric values.

- C is said to be implemented to convey a specific con-
cept vocabulary Vi ∈ V iff C is a tuple C = (AN, IID,
G, CO, VAL, DT, CVT) such that Vi

 is assigned to⎯⎯⎯⎯→ C,
notated as Vi = C(AN, IID, G, CO) → VAL(DT, CVT),
where:

 C(AN, IID, G, CO) is called an implemented
concept structure on V, simply notated as C.

 VAL(DT, CVT) is called an implemented con-
cept value structure for C(AN, IID, G, CO),
simply notated as VAL.

- An instance of an implemented concept structure c ∈
C is a conceptualization of C iff all an, iid, g, co ⊆ c
respectively take their particular values such that
an→value, iid→value, g→ value, co→value such
that c(value(an), value(iid), value(g), value(co)),
where iid ∈ IID, an ∈ AN, g ∈ G and co ∈ CO. A
conceptualization c of C is called as a concept, which
is a concept in a vocabulary Vi such that c ∈ Vi.

 When all c ∈ Vi is classified through their iids
on the vector concept tree (1, i, …, i) [3], we
say Vi is a classified vocabulary.

 Recursively, if all Vi ∈ V is classified through
Vi(value(iid), value(an), value(g), value(co))
on the vector concept tree (1, i, …, i), we say
V is a resource tree in the BID domain.

- A concept c = c(value(an), value(iid), value(g),
value(co)) is reified iff its paired implemented con-
cept value structure val ∈ VAL is instantiated as
val(value(dt), value(cvt)), and the val takes a particu-
lar value value such that c → value(val) → value.

For example, a piece of specifically conceptualized
and reified business information (i.e. a reified concept)
can be in the form of c(r.52.14.15.1.3.1, currency of price,
scalarType, 0)→val(string, Currency)→ USD.

2.2. Business Documents
A business document is a composite concept of many

business concepts, such as purchasing order. It specifies
the composite knowledge of a company such that how a
document concept is a composed from multiple vocabu-
laries. It has the following characteristics:

Unit of concept composition. A business document is a
composite concept consisted of a collection of document
elements where each element is a concept, e.g. invoice.

Uniquely identifiable document elements. Each docu-
ment element is an identified concept, e.g. vendor→2.8.

Hierarchically arranged document elements. All
document elements in a document is hierarchically ar-
ranged through the vector concept tree [3], e.g. Purchas-
ingOrder(Address(BillTo, ShipTo), ProductItems(item
(name, specification, price, quantity))).

External concept referenced. A document element
concept can reference to an external concept, e.g. the ad-

dress element can be referenced by the address concept in
an organization vocabulary.

Computing function. A document element value can be
a computing result of multiple values of other element
values, e.g. the document element value of “total” con-
cept can be the sum of the product items values.

Document concept vocabulary. All names of business
documents are a type of business information, which can
be classified in a document concept vocabulary through
the vector concept tree.

More formally, a business document can be defined in
the following representation.
Definition 2 (Business Document Domain): BDD

Given a business document domain BDD, then BDD is
a tuple BDD = (DOC, D, T, E, EV, IID, AN, G, CO, RID,
VAL, DT, FN), where:
- DOC is document structure symbol.
- D is a document vocabulary such that for any particu-

lar document name d ∈ D ∈ V ∈ BID, doc ∈ DOC as
structure conveys the meaning of d ∈ D.

- T is document type symbol for specifying that the
document is either conceptualized or reified.

- E ⊂ DOC is element concept structure symbol.
- EV is a set of meaningful element vocabularies such

that EV takes E as its syntactic structure and EV is the
meaning conveyed in E.

- IID, AN, CO, G ⊂ E are the symbols of document
element concept identifier, annotation, connotation
and concept group.

- RID ⊂ E is external concept identifier symbol refer-
enced to the external concepts such that RID → IID.

- VAL ⊂ E is the concept value structure symbol of
document element.

- DT, FN ⊂ VAL are symbols of data types and com-
puting functions.

- E is said to be implemented to convey a particular
document element vocabulary EVi ⊆ EV iff E is a tu-
ple E = (IID, AN, CO, G, RID, VAL, DT, FN) such
that EVi E, notated as E(IID, AN, CO,
G, RID) → VAL(DT, FN), where:

 is assigned to⎯⎯⎯⎯→

 E(IID, AN, CO, G, RID) is called the imple-
mented element concept structure on EVi,
simply notated as E.

 VAL(DT, FN) is called the implemented ele-
ment value structure for E(IID, AN, CO, G,
RID), simply notated as VAL.

- DOC is said to be implemented to convey a particular
document D iff DOC is a tuple DOC = (IID, AN, T,
E), notated as DOC(IID, AN, T, E), where IID is the
symbol of document concept identifier IID ⊂ D and
AN is denotation of document.

- An implemented element structure e ∈ E is a concep-
tualization of E iff e(value(iid), value(an), value(co),

value(g), value(rid)), where iid ∈ IID, an ∈ AN, co ∈
CO, g ∈ G, rid ∈ RID. This e is called as document
element concept.

- An implemented document structure doc ∈ DOC is
conceptualized iff ∀e ⊆ E is conceptualized, and IID
is instantiated to a particular iid ∈ d ∈ D, and T take
a particular value “template” such that doc =
doc(value(iid), value(an), “template”, {e}) This doc
is called a document template.

- An e is reified iff e(value(iid), value(an), value(co),
value(g), value(rid)) → val(dt, fn), where val ∈ VAL,
dt ∈ DT and fn ∈ FN.

- A document template doc is reified iff ∀e ⊆ doc are
reified and T takes the value “instance” such that doc
= doc(value(iid), value(an), “instance”, {e → val}).

For example, a simple conceptualized PurchaseOrder
document template can be:

doc(iid=“d.1.2” an=“purchase order” t= “template”)(
e(iid=“e.1”, an=“ShipTo”, co=“many”, g=“address”,

rid = “addr345”),
e(iid=“e.2”, an=“items”, co=“many”, g=“product”,
 rid = “prod23”))

where document term d is (iid: d.1.2 an: purchase order)
and rid = addr345 and rid = prod23 point to the address
concept and product concepts defined in BID domain for
users to reify the document in reification time.

2.3. Business Processes
A business process is a sequence of conditional opera-

tions on a set of business documents. It dynamically
specifies the intra- and inter-activities of organizations as
activity pattern knowledge [6]. Given a set of documents,
a conditional operation on one document in different con-
text may produce different resulting documents and trig-
ger different conditional operations on them. These trig-
gering conditions constitute different activity patterns be-
tween heterogeneous semantic communities [10] and are
the issue of business process interoperation. For example,
an operation SendQuote may send QutationSheet to re-
ceivers, where some may trigger operation ReceiveQuote
if they understand the incoming SendQuote on Quota-
tionSheet and some may simply ignore it if not.

This subsection devises the document-based business
process in a business process domain (BPD).
Definition 3 (Business Process Domain): BPD

Given a business process domain BPD, the BPD is a
tuple BPD = (PROC, P, O, IID, AN, VIS, DID, SND, RCV,
S, LID, LOGIC, COND, DV), where:
- PROC is process structure symbol.
- P is a process vocabulary such that for any particular

process name p ∈ P ∈ V ∈ BID, proc ∈ PROC as
structure conveys the meaning of p.

- O ⊂ PROC is process operation structure symbol.

- IID, AN, VIS, DID, SND, RCV, S, LID ⊂ O are the
symbols of identifier (IID), annotation (AN), and op-
eration visibility (VIS) of the operation O, document
identifier in processing (DID = IID of DOC ∈ BDD),
sender’s address of (SND), receiver’s address (RCV),
process operation status (S), and proposed document
processing logic identifier (LID), where visibility VIS
has the status such as “public”, “private” and “part-
ner” to restrict the nature of the operation O, and
process operation status S has status of “arrived”,
“acknowledged”, “processed” and “sent”.

- LOGIC is the symbol of a document processing logic
identified by LID, in the form of a computing logic.

- COND ⊂ LOGIC is the symbol of document process-
ing conditional result.

- DV is the symbol of conditional value of COND.
- An process operation O is said to be implemented iff

O is a tuple O = (IID, AN, VIS, DID, SND, RCV, S,
LID), notated as O(IID, AN, VIS, DID, SND, RCV,
LID) where DID identifies the incoming document
and LID identifies processing logic LOGIC.

- LOGIC is said to be implemented iff LOGIC is a tu-
ple LOGIC = (LID, DID, COND, DV, O) such that
LOGIC(LID, DID, COND(DV))→O, where O is the
outgoing process operation.

- PROC is said to be implemented iff PROC is a tuple
PROC = (IID, AN, O) such that for (IID, AN) ∈ P,
PROC(IID, AN, O).

- An implemented process operation o ∈ O is said to
be conceptualized iff all its elements are conceptual-
ized such that o(value(iid), value(an), value(vis),
value(did), value(snd) = EMPTY, value(rcv) =
EMPTY, value(s) = EMPTY, value(lid)). This o is
called as process operation concept.

- An implemented business process proc ∈ PROC is
said to be conceptualized iff all o ∈ O of proc is con-
ceptualized. This proc is called as process template.

- A conceptualized process is said to be reified iff one
of its operation is triggered to process an incoming
document and accordingly changes its status S.

For example, a conceptualized business offer process
may include the following four process operations:
proc(iid = “p.3”, an = “offer processing”)

o(iid = “p.3_1”, an=“RequestOffer”, vis = “public”,
did=“InquirySheet”, snd, rcv, s, lid = “processInquiry”),

o(iid = “p.3_2”, an=“ProcessOffer”, vis = “private”,
did=“ReceivedInquiry”, snd, rcv, s, lid = “processOffer”),

o(iid = “p.3_3”, an=“ProveOffer”, vis = “private”,
did=“UnprovedOffer”, snd, rcv, s, lid = “proveOffer”),

o(iid = “p.3_4”, an=“MakeOffer”, vis = “public”,
did=“ProvedOffer”, snd, rcv, s, lid = “makeOffer”).

where each operation has an operation logic identified by
lid to process the incoming business document identified
by did. The processing triggers a forward operation in the
sequence and produces an outgoing document.

In next section, we will describe the sharing relation-
ship between the domains of BID, BDD and BPD in a
tree-layer TRANSCODE model.

3. Three-Layer TRANSCODE Model
The three-layer TRANSCODE Model shown in Fig. 1

describes the knowledge sharing relationship, and states
how the integrated business information can be shared in
business document integration and how the integrated
business documents can be shared in business process in-
tegration. The key to understanding the Model is struc-
ture, concept, and the relationship between structure and
concept [4].

BPD

BDD

BID

PROC(IID, AN, (O1, ..., Oi, ...,Oi+m, ...)){

 Oi(IID, LID, DID, ...){

 LOGIC(LID, DIDi, COND(DV))=>Oi+m}}

 DOC(IIDi, ANi, {E1, ..., Ei, ..., En}){

 Ei(IID, AN, RID) =>VAL(DT, FN)}

 V{

 P(IID, ...), D(IID, ...), R(IID, ...)
 V1(IID, ...), ..., Vi(IID, ...)
 FN(IID, ...), DT(IID, ...)}

Fig. 1: A three layer TRANSCODE model

The Model consists of three layers. The bottom layer is
the layer of business information domain (BID), where
basic knowledge of business information is designed in a
vocabulary tree V, which consists of concept vocabular-
ies (R, D, P, V1, …, Vi, …, Vn) of products, documents,
processes and others. Each specific vocabulary Vi is a set
of concepts ∀c ∈ C such that c has a unique identifier iid
∈ IID that uniquely identifies the meaning of the concept
c conveyed in a concept structure c(an, iid, g, co) and
semantically conceptualized as c(value(an), value(iid),
value(g), value(co)). In this layer, the basic data types (ei-
ther primitives or compounds) are designed as a special
data type vocabulary DT, which is used to reify vocabu-
laries. A set of conversion functions for converting sca-
lars (e.g. USD → GBP, AUD or liter → gallon) and units
(e.g. dozen → piece) is designed as a special conversion
function vocabulary CVT for being used in heterogeneous
business information transformation.

The middle layer is the layer of business document
domain (BDD), where the composite knowledge of busi-
ness documents is designed in a set of business document
templates such that ∀doc ∈ DOC ⊆ BDD. Each template

doc is identified by a document concept identifier iid ∈ d
∈ D ∈BID, and consists of a set of document elements {e}
⊆ E. Any e has an element identifier iid ∈ e and an exter-
nal concept identifier rid ∈ (r∪o∪vi) (r∈R, o∈O and
vi∈Vi in BID) that semantically defines the meaning of
element identifier such that rid → iid. Thus, both docu-
ments and document elements reuse the already-defined
concepts of vocabularies. However, these reuses are inde-
pendent of document templates doc(value(iid), …)
(e1(value(iid), value(rid), …), …, ei(value(iid),
value(rid), …)), where each of them is conceptualized
from the given document structure doc(iid, …)(e1(iid,
rid, …), …, ei(iid, rid), …) ∈ DOC in BDD.

The top layer is the layer of business process domain
(BPD), where the activity pattern knowledge of business
processes is designed in a set of business process tem-
plates such that ∀proc ∈ PROC. Each template proc is
identified by a process concept identifier iid∈p∈P⊆BID,
and consists of a sequence of process operations such
that ∀Oi ∈ O. Any Oi has an operation identifier iid ∈ IID
and operates on a business document template identified
by a document concept identifier did ∈ Oi. This did calls
and reuses an existing document template doc through
calling logic∈LOGIC via logic identifier
lid∈LID∈LOGIC by mapping did onto iid ∈
doc∈DOC⊆BDD. After doc is called, the corresponding
logic computes the logic value dv of cond∈COND to
trigger subsequent operation Oi+m∈proc in operation se-
quence until termination operation. In this layer, both
document and logic templates doc and logic are reused,
but independent of business process template
proc(value(iid), value(an), {O1(value(iid), value(did),
value(lid), …), …, Oi(value(iid), value(did),
value(lid), …)}), which is conceptualized from the proc-
ess structure proc(iid, an, {O1(iid, did, lid, …), …, Oi(iid,
did, lid, …)}) ∈ PROC in BPD.

The above Model utilizes concept identifiers generated
on vector concept tree (1, i, …, i) [3] to realize the shar-
ing and integration of business information, business
documents and business processes. It provides the fea-
tures of the high reuse of individual integration results in
BID and BDD and the flexibility of independent design of
business information, documents and processes.

4. XML Implementation of TRANSCODE
Since business information, business documents and

business processes are independently structured, concep-
tualized, and reified, the TRANSCODE model can be in-
dependently implemented into three different XML speci-
fications: XML business information (XBI), XML busi-
ness document (XBD) and XML business process (XBP)
to demonstrate the feasibility of the Model.

4.1. XML Business Information
Given a vocabulary structure V = C(AN, IID, G, CO)

→ VAL(DT, CVT), its XML DTD can be provided:
<!ELEMENT voc (c*)> <! -- voc.dtd -->
<!ATTLIST voc an CDATA #REQUIRED iid ID #REQUIRED>

<!ELEMENT c (c*,val?)>
<!ATTLIST c iid ID #REQUIRED an CDATA #REQUIRED

 co CDATA #REQUIRED g CDATA #REQUIRED>

<!ELEMENT val (#PCDATA)>
<!ATTLIST val cvt CDATA #IMPLIED dt CDATA #REQUIRED>

With this DTD, any business information vocabulary
e.g. product information r ∈ V can be syntactically struc-
tured, and further semantically conceptualized and reified
as following:
<?xml version="1.0"?><!DOCTYPE voc SYSTEM "voc.dtd">
<r iid="r" an="product information">

 … …
<c iid="r.1.1" an="electronic appliance" g="category" co="*">

 <c iid="r.1.1.1" an="refrigerators" g="product" co="*">
 <c iid="r.1.1.1.1" an="color" g="constant" co="0">
 <val dt="string">white</val></c>

<c iid="r.1.1.1.2" an="price" g="attribute" co="3">
 <c iid="r.1.1.1.2.1" an="currency" g="scalar" co="0">
 <val dt="string" cvt="Currency">USD</val> </c>
 <c iid="r.1.1.1.2.2" an="value" g="value" co="0">
 <val dt="decimal" cvt="Value">700</val></c>
 <c iid="r.1.1.1.2.3" an="unit" g="unit" co="0">
 <val dt="string" cvt="Unit">piece</val></c></c></c>

 … …
</r>

In the example, if no element val is included, then the
r is only a conceptualization (i.e. a set of concepts).

4.2. XML Business Document
Given a business document structure DOC = DOC(IID,

AN, T, E(IID, AN, CO, G, RID) → VAL(DT, FN)), its
XML DTD can be presented:
<!ELEMENT doc (e*)> <! -- doc.dtd -->
<!ATTLIST doc an CDATA #REQUIRED

 iid ID #REQUIRED t CDATA #IMPLIED>

<!ELEMENT e (e*,val?)>
<!ATTLIST e

an CDATA #REQUIRED co CDATA #IMPLIED
g CDATA #IMPLIED iid ID #REQUIRED
 rid CDATA #IMPLIED>

<!ELEMENT val (#PCDATA)>
<!ATTLIST val dt CDATA #REQUIRED fn NMTOKEN #IMPLIED>

This DTD has syntactically implemented the business
document structure DOC, and can be semantically con-
ceptualized e.g. a purchase order template as following:
<?xml version="1.0"?><!DOCTYPE doc SYSTEM "doc.dtd">
<doc iid="d.5" an="purchase order" t="template">

<e iid="e.1" an="order date" co="0" g="date" rid="t.3"/>
<e iid="e.2" an="address" co="2" g="org" rid="addr">

 <e iid="e.2.1" an="ship to" co="*" g="addr" rid="addr"/>
 <e iid="e.2.2" an="bill to" co="*" g="addr" rid="addr"/></e>

<e iid="e.3" an="product items" co="*" g="product">
 <e iid="e.3.1" an="refrigerator" co="0" g="ref11" rid="ref11"/>
 <e iid="e.3.2" an="quantity" co="0" g="unit" rid="u.2.5"/>

 <e iid="e.3.3" an="price" co="0" g="value" rid=""/></e>
<e iid="e.3.4" an="ship date" co="0" g="date" rid="t.3"/>

</doc>

In above document template, the value of “co” refers
to the number of lower level connotation concepts (e.g.
co=“0” means no connotation), the value of “g” refers to
group concept identifier (e.g. g=“date” means date con-
cept), and the value of “rid” refers to the concept reuse
that is identified in group concept (e.g. rid=“t.3” is a con-
cept reuse in “date” group concept”). If co=“0” and
value(g)=value(rid), the rid is the reuse of group concept
only (e.g. rid=“ref11”). If co=“*” and value(g)=value(rid),
the rid reuses group concept and all its lower level con-
noted concepts during reification. For example:

<e iid="e.2.1" an="ship to" co="*" g="addr" rid="addr">
 <e iid="e.2.1.1" an="name" co="0">
 <val dt="string">Collins</val></e>
 <e iid="e.2.1.2" an="street">
 <val dt="string">7 Broadway</val></e>
 <e iid="e.2.1.3" an="city">
 <val dt="string">New York</val></e>
 <e iid="e.2.1.4" an="state">
 <val dt="string">NY</val></e>
 <e iid="e.2.1.5" an="country">
 <val dt="string">USA</val></e>
 <e iid="e.2.1.6" an="zip"><val dt="pint">10002</val></e></e>

The conceptualized and reified purchase order exam-
ple illustrated above has demonstrated the flexible reuse
of the external concepts in BID.

4.3. XML Business Process
Given a business process structure PROC = PROC(IID,

AN, O(IID, AN, VIS, DID, SND, RCV, LID) and
LOGIC(LID, DID, COND(DV))→O, its XML DTD im-
plementation is as following:

<!ELEMENT proc (o*)> <!-- proc.dtd -->
<!ATTLIST proc iid ID #REQUIRED an CDATA #REQUIRED>
<!ELEMENT o (logic)>
<!ATTLIST o
 iid ID #REQUIRED an CDATA #REQUIRED
 did CDATA #REQUIRED lid CDATA #REQUIRED
 rcv CDATA #REQUIRED snd CDATA #REQUIRED
 vis NMTOKEN #REQUIRED>
<!ELEMENT logic (cond*)>
<!ATTLIST logic lid ID #REQUIRED did CDATA #REQUIRED>
<!ELEMENT cond (#PCDATA)>
<!ATTLIST cond dv CDATD #REQUIRED>

Based on this DTD, process designers can create busi-
ness process templates, e.g. an offer process:
<?xml version="1.0"?><!DOCTYPE proc SYSTEM "proc.dtd">
<proc iid="p.3" an="offer process">

<o iid="p.3_1" an="RequestOffer" vis="public" did="InquirySheet"
 snd="" rcv="" lid="processInquiry">

<logic lid="p.3_1-lgc" did="InquirySheet">
<cond dv=“1”>p.3_2</cond>
<cond dv= “e”>exception</cond></logic></o>

<o iid="p.3_2" an="ProcessOffer" vis="private"
 did="ReceivedInquiry" snd="" rcv="" lid="processOffer">

 <logic lid="p.3_2-lgc" did="ReceivedInquiry">
 <cond dv=“1”>p.3_3</cond><cond dv=“2”>p.3_5</cond>

<cond dv=“e”>exception</cond></logic></o>
<o iid="p.3_3" an="ProveOffer" vis="private" did="UnprovedOffer"

 snd="" rcv="" lid="proveOffer">
 <logic lid="p.3_3-lgc" did="UnprovedOffer">
 <cond dv=“1”>p.3_4</cond>

<cond dv=“e”>exception</cond></logic></o>
<o iid="p.3_4" an="MakeOffer" vis="public" did="ProvedOffer"

 snd="" rcv="" lid="makeOffer">
 <logic lid="p.3_4-lgc" did="ProvedOffer">
 <cond dv=“1”>p.3_5</cond>

<cond dv=“e”>exception</cond></logic></o>
<o iid="p.3_5" an="MakeOffer" vis="public" did="ReceivedOffer2"

 snd="" rcv="" lid="makeOffer">
 <logic lid="p.3_5-lgc" did="ReceivedOffer2">
 <cond dv=“1”>p.3_6</cond>

<cond dv=“e”>exception</cond></logic></o>
</proc>

In this offer processing process template, only process
operations p.3_1, p.3_4 and p.3_5 are set as “public”.
Thus, the sender does not know how the receiver proc-
esses the offer internally. The visibility (vis) feature is
very important because nearly any company does not al-
low other companies to know its internal business proc-
essing. This process template also allows the flexible trig-
gering of subsequent operations in processing through
conditional value (cond). For example, for operation
iid=“p.3.2” with logic lid = “p.3_2-lgc”, if its conditional
value dv=1, then the next followed process operation is
p.3_3, which requires an approval for any outside quota-
tion. But if the result is dv=2, then the processed offer has
no requirement for approval and the next process opera-
tion is iid=“p.3_5”.

5. Discussion and Related Work
The TRANSCODE approach focuses on the vertical

integration of business information, business documents
and business processes between multiple organizations.

5.1. TRANSCODE on Product Map Theory
The underlying theory of TRANSCODE approach is

Product Map [5], which represents a sign (i.e. representa-
tion) as a couple of structure and concept. Structure is
meaningless if no context is imposed on. It becomes
meaningful only after a concept (i.e. a contextual meaning)
is conveyed. Metaphorically, a piece of paper is structure
and understandable words on it are concepts. Since any
concept has denotation that is again specified by connota-
tion, the conveyed structure of the concept hence presents
the feature of hierarchy (e.g. a vocabulary or a document
hierarchy). Since concept denotation specifically defines
concept in a particular position of a concept hierarchy, a
concept can thus be uniquely identified by its hierarchical
position (which produces IID). In a given context, a struc-
ture can be implemented as a certain form to generically
convey meanings. However, an implemented structure
does not necessarily lead to any concept if no one con-
veys meanings onto the structure. Thus, conceptualization
of implemented structures (i.e. concepts) is needed to add

new concepts to vocabularies, libraries of document and
process templates. After concepts are available, they can
be used to describe the particular phenomena, which is a
process of concept reification.

The thought of structure and concept makes us possi-
ble to vertically integrate information, documents and
processes of businesses into a three-layer TRANSCODE
model, where each domain is independent. In each do-
main, structure is separated from concepts, and concepts
are separated from their reifications. The semantic link-
ing between three separate domains (BID, BDD and BPD)
is through the unique concept identifiers IID.

5.2. Comparing TRANSCODE with ebXML
The ebXML (www.ebxml.org) [11] is an important de

facto industrial standard for global business data ex-
change. It allows contextually different companies to dis-
cover, register and reuse business information entities.
Comparing with TRANSCODE developed in this paper,
there are some points of differences.

Business data representation. The ebXML represents
business data in monolithic Core Components (aggre-
gated core component(basic core components(data type),
associated core components)) while TRANSCODE
represents business data (business information, docu-
ments and processes) in three separate aspects: structure,
concept and reification. For ebXML, a business concept
is defined as soon as the structure of a Core Component is
created. The business definitions (i.e. concept) on Core
Components are immediate and they are reflected on the
terms (similar to IID of TRANSCODE) for Core Compo-
nents themselves. For TRANSCODE, structure (e.g. DTD)
is only syntax without any business semantics. It conveys
business concepts (simply the pair values of IID and AN)
only after business semantics is collaboratively designed
at concept design time [6], and the reification of concepts
is even postponed at use time.

The capability of separating structure from concept
and reification implies that TRANSCODE provides not
only the flexibility of the autonomous design of concepts
but also the reuse of existing integration results. Business
integration systems can be divided into three independent
components: system design, concept design and concept
use. In system design phase, systems design and maintain
the integration structures (e.g. DTDs of XBI, XBD and
XBP). In concept design phase, the concept designers col-
laboratively design the concepts. In reification phase, the
concept users simply reify the already-defined concepts
for routine business processing, without needing to know
any integration tasks. This again implies that millions of
non-experienced users can freely participate in integrated
systems with lower cost and no technical obstacles.

Understanding of business contextual semantics. Both
ebXML and TRANSCODE aim to resolve business data
interoperation problem between different business con-

texts. Nevertheless, their approaches to the issue are dif-
ferent due to the understanding of business contextual
semantics. The ebXML starts with relaxing the traditional
business standards from static message definitions that
have not enabled a sufficient degree of interoperability or
flexibility. Thus, it adopts the solution of controlled vo-
cabularies to create a relaxed business standard for inter-
operating large standards such as EDI and SWIFT. In
such solution, users can register users’ vocabularies, dis-
cover and reuse the already-registered vocabularies fol-
lowing the controlling rules of ebXML. Under this cir-
cumstance, users’ contextual business semantics for docu-
ments and processes (i.e. Business Information Entities -
BIE) base on the controlled semantics of Core Compo-
nents through strict association. The result is that users
have to understand what ebXML is in order to register
and discover BIEs. This is not optimistic to SMEs (e.g. a
5-people company) in both financial and technical aspects.

TRANSCODE considers SMEs and has thus adopted
the solution of collaborative concept mapping [6] as its
external integration. That is, all SME are unique business
contexts, which interoperate with each other through col-
laborative concept mapping via concept IID. With this so-
lution, each SME maintains individual business context to
achieve personalization. Specific to this paper, the verti-
cal integration of business information, documents and
processes becomes easy because the vertical integration
happens within the individual context of a business or-
ganization. The implication is that companies are not nec-
essary to tightly conform to controlled vocabularies like
ebXML. What they require is to incrementally map their
personalized vocabularies, document templates, and proc-
ess templates onto those published in TRANSCODE
business data providers through a simple given client pro-
gram, whenever they need.

There are many other subtle differences between
ebXML and TRANSCODE, which will not discuss here.
In summary, TRANSCODE is a complement approach of
ebXML that vertically integrates business data within an
individual business context that is collaboratively mapped
with others.

5.3. Other Related Work
An early vertical integration research about business

data could be found in [9]. This work proposed to use an
RDFT bridge to map heterogeneous concepts in each
layer (i.e. product data for www.UNSPSC.org and
www.eclass.de, business documents for www.cXML.org
and www.xCBL.org and business processes). Neverthe-
less, other researches seldom cover vertical integration of
business information, documents and processes. Most re-
searches discuss business integration on individual level
of product data integration [1], business document inte-
gration (www.UDEF.org), or business process integration
[13]. In BID layer of TRANSCODE, business informa-

tion (BI) relates to ontology, which can be compared with
BI vocabulary. However, existing ontology definitions or
representations are diverse. A general comparison is dif-
ficult. Given Gruber’s definition (“an explicit specifica-
tion of a conceptualization”) [2] or Uschold-Gruninger’s
definition (“a shared understanding of some domain of
interest”) [12], BI vocabulary resembles ontology in
terms of explicitness and sharing understanding such that
a BI vocabulary is an explicit collaboration result.

6. Conclusion
This paper has proposed a novel TRANSCODE ap-

proach to resolve the issue of the vertical integration of
business information, business documents and business
processes, where most existing integration solutions only
focus on individual aspect of the above. This approach
firstly represents business information, business docu-
ments and business processes in three independent struc-
tures, and then aligns these structures in a three-layer
TRANSCODE Model. In this Model, business informa-
tion domain provides basic knowledge of business or-
ganizations, business document domain provides compos-
ite knowledge of business document templates, and busi-
ness process domain provides activity pattern knowledge
of business process templates. The lower layer domain
knowledge is reused and integrated into higher layer do-
main through unique concept identifiers. To test the fea-
sibility of TRANSCODE Model, the Model has further
been implemented in three XML specifications - XBI,
XBD and XBP. The included examples of these specifica-
tions has demonstrated that the abstract TRANSCODE
Model can be implemented, and the concept identifiers
IID is an effective vehicle for semantically link lower
layer concepts with higher layer concepts for reuse.

In this paper, an important methodology for business
integration is implied, that is, the separation of structure
from concepts, and the separation of concepts from reifi-
cation. This methodology fully utilizes the characteristics
of structure and concept developed in Product Map [5].
The separation enables the flexible design and use of
business integration systems.

This paper is a mature part of the ongoing research
project for globally integrating semantically heterogene-
ous business information, business documents and busi-
ness processes. It has built a core representation limited to
a set of homogeneous business organizations. Some fu-
ture work include mapping the core representation with
ad hoc semantically heterogeneous representations, the
creation of conversion function library, and the contextual
value translation between different natural languages.

7. Acknowledgements
The work reported in this paper has been partially sup-

ported by the University of Macau Research Grand.

8. References
[1] Fensel, D., Ding, Y., Omelayenko, B., Schulten, E.,

Botquin, G., Brown, M. and A. Flett, “Product Data Inte-
gration in B2B E-Commerce”, IEEE Intelligent Systems,
Vol. 16, No. 4, 2001, pp. 54-59.

[2] Gruber, T., “Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing”, Technical Report KSL-
93-04, 1993.

[3] Guo, J. and C. Sun, “Context Representation, Transforma-
tion and Comparison for Ad Hoc Product Data Exchange”,
in: Proc. of the 2003 ACM Symposium on Document Engi-
neering, ACM Press, 2003, pp. 121-130.

[4] Guo, J., Sun, C. and Chen, D., “Deconstruction and Recon-
struction of Heterogeneous Electronic Product Catalogues
for Semantic Interoperation”, in: Proc. of the 2004 IEEE
Conf. on E-Commerce Technology (CEC’04), IEEE Com-
puter Society Press, 2004, pp. 333-336.

[5] Guo, J., Integrating Ad Hoc Electronic Product Catalogues
through Collaborative Maintenance of Semantic Consis-
tency, Chapter 4, PhD Thesis, Griffith University, 2005,
http://www4.gu.edu.au:8080/ adt-root/ public/ adt-
QGU20050824.125257.

[6] Guo, J, Sun, C. and D. Chen, “Transforming Heterogene-
ous Product Concepts through Mapping Structure”, in:
Proc. of 2004 Int'l Conf. on Cyberworlds (CW’04), IEEE
Computer Society Press, 2004, pp. 22-29.

[7] Manheim, M. and M. Fritz, “Information Technology
Tools to Support Virtual Organization Management: A
Cognitive Informatics Approach”, Organizational Virtual-
ness, Sieber, P. and J. Griese (Eds.), 1998, pp. 137-153.

[8] Medjahed, B., Benetallah, B., Bouguettaya, A., Ngu, A.
and A. Elmagarmid, “Business-to-business Interactions: Is-
sues and Enabling Technologies”, The VLDB Journal, 12,
2003, pp.59-85.

[9] Omelayenko, B., Fensel, D. and Bussler, C., “Mapping
Technology for Enterprise Integration”, in: Proc. of the
15th Int’l FLAIRS Conf., USA, 2002, pp. 419-424.

[10] Robinson, M. and L. Bannon, “Questioning Representa-
tions”, in: Proc. of ECSCW’91, Amsterdam, Holland, 1991,
pp. 219-233.

[11] UN/CEFACT, ebXML Core Components Technical Speci-
fication Version 1.85 Draft, United Nations Centre for
Trade Facilitation and Electronic Business, Sept. 30 2002.

[12] Uschold, M. and M. Gruninger, “Ontologies: Principles,
Methods and Applications”, Knowledge Sharing and Re-
view 11(2), 1996, pp.93-155.

[13] Wombacher, A., Fankhauser, P., Mahleko, B. and E. Neu-
hold, “Matchmaking for business processes based on con-
junctive finite state automata”, Int. J. Business Process In-
tegration and Management, Vol. 1, No. 1, 2005, pp. 3-11.

	Business Documents
	Business Processes
	Three-Layer TRANSCODE Model
	XML Implementation of TRANSCODE
	XML Business Information
	XML Business Document
	XML Business Process

	Discussion and Related Work
	TRANSCODE on Product Map Theory
	Comparing TRANSCODE with ebXML
	Other Related Work

	Acknowledgements

