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SUMMARY

The Lanczos method with shift-invert technique is exploited to approximate the symmetric positive
semidefinite Toeplitz matrix exponential. The complexity is lowered by the Gohberg-Semencul formula
and the fast Fourier transform. Application to the numerical solution of an integral equation is studied.
Numerical experiments are carried out to demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

An n-by-n matrix Tn is said to be Toeplitz if [Tn]j,k = tj−k for 1 ≤ j, k ≤ n. Toeplitz matrices
occur in a variety of applications in mathematics and engineering; see [1, 2] and the references
therein. In this paper we study the approximation to the product of the symmetric Toeplitz
matrix exponential (TME) with a vector

y(τ) = e−τTnr, (1)

where Tn is symmetric positive semidefinite Toeplitz matrix, τ > 0 is a scaling factor, and r is
a given vector. The TME is involved in a number of applications. For option pricing in jump-
diffusion models, the TME is employed to calculate the solution of a partial integro-differential
equation [3]. The TME can also be applied to numerically solve the Volterra-Wiener-Hopf
equation; see [4, 5] and Example 3 in Section 4 for instance.
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Classical methods for computing an n-by-n dense matrix exponential, such as the matrix
decomposition method or the scaling and squaring method [6], need O(n3) complexity. Over
the last twenty years, Krylov subspace methods have been intensively investigated for large
and sparse matrices, due to their efficiency and easy implementation [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17]. The main idea is to project the matrix exponential onto a small Krylov subspace
and compute the resulting matrix exponential. This approach is achieved by the Lanczos
process for symmetric matrices or the Arnoldi process for nonsymmetric matrices, while both
require only the matrix-vector multiplications. Furthermore, the shift-invert technique can be
employed to speed up the Lanczos or Arnoldi process [14, 17].

In general, Toeplitz matrices are dense. Nevertheless, the Toeplitz matrix-vector
multiplication can be computed by the fast Fourier transform (FFT) with O(n log n)
complexity [1, 2]. Furthermore, the inverse of Toeplitz matrix can be explicitly expressed
by the Gohberg-Semencul formula (GSF) [18, 19]. Those properties can be used to speed up
the approximation to the TME. In this paper, we extend the shift-invert Lanczos method
[17] to compute the symmetric positive semidefinite TME. By the Toeplitz structure and the
GSF, the computational cost of approximation to the symmetric TME is reduced to O(n log n)
operations. As an application, we employ our method to a TME which arises in the numerical
solution of the Volterra-Wiener-Hopf equation [4]. We remark that it is not necessary to assume
the matrix to be positive semidefinite, which is postulated throughout this paper. For the
indefinite case, one can easily transform it to the positive semidefinite case by performing a
suitable shift and then multiply the result with a corresponding factor [17].

The paper is organized as follows. In Section 2, we introduce some background on Toeplitz
matrices. In Section 3, the shift-invert Lanczos method is extended to approximate the
symmetric TME. Numerical results and applications to the Volterra-Wiener-Hopf equation
are reported in Section 4 to demonstrate the effectiveness of the proposed method. Finally,
concluding remarks are given in Section 5.

2. TOEPLITZ MATRICES AND SOME PROPERTIES

We define a Toeplitz matrix Cn ([Cn]j,k = cj−k) as a circulant matrix if ck = ck−n for
1 ≤ k ≤ n− 1. A circulant matrix can be diagonalized by the Fourier matrix Fn; i.e.,

Cn = F ∗nΛnFn, (2)

where the entries of Fn are given by

[Fn]j,k =
1√
n

e
2πijk

n , i ≡ √−1, 0 ≤ j, k ≤ n− 1,

and Λn is a diagonal matrix holding the eigenvalues of Cn. We note that Λn can be obtained in
O(n log n) operations by taking the FFT of the first column of Cn [1, 2]. Once Λn is obtained,
the product Cnr or C−1

n r for any vector r can be computed by two n-length FFTs with
O(n log n) complexity.

A Toeplitz matrix Sn ([Sn]j,k = sj−k) is skew-circulant if sk = −sk−n for 1 ≤ k ≤ n − 1.
Analogous to (2), a skew-circulant matrix has the spectral decomposition [2],

Sn = Ω∗F ∗nΛnFnΩ, (3)
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2 H. K. PANG AND H. W. SUN

where Ω = diag(1, e−iπ/n, . . . , e−i(n−1)π/n). Therefore, the products of Snr and S−1
n r also can

be computed by two n-length FFTs with O(n log n) complexity.
Notice that a Toeplitz matrix Tn can be embedded into a 2n-by-2n circulant matrix; i.e.,[

Tn ×
× Tn

] [
r
0

]
=

[
Tnr
†

]
.

Therefore, the multiplication of Tnr can be done by two 2n-length FFTs, or roughly four n-
length FFTs, with O(n log n) complexity provided that the spectra of the embedded circulant
matrix are already obtained; see more details in [1, 2].

The celebrated GSF for the inverse of a symmetric positive definite Toeplitz matrix Tn is
formulated as [18]:

T−1
n =

1
l1

(
LnLᵀ

n − L̂nL̂ᵀ
n

)
, (4)

where both Ln and L̂n are lower triangular Toeplitz matrices given by

Ln =




l1 0 · · · 0

l2 l1
. . .

...
...

. . .
. . . 0

ln · · · l2 l1




and L̂n =




0 0 · · · 0

ln 0
. . .

...
...

. . .
. . . 0

l2 · · · ln 0




,

with l = (l1, l2, . . . , ln)ᵀ being the first column of T−1
n . Thus l is the solution of the linear

system
Tnl = e1 ≡ (1, 0, . . . , 0)ᵀ. (5)

We note that l1 > 0 always holds due to the symmetric positive definiteness of Tn [19]. Once
l in (5) is obtained, according to (4), the multiplication of T−1

n r can be done in O(n log n)
operations with four n-length Toeplitz matrix-vector products, or roughly sixteen n-length
FFTs. In the following, we present a strategy to reduce the cost of computing T−1

n r to only
four n-length FFTs, or roughly one n-length Toeplitz matrix-vector products [20].

Let

Jn =




0 0 · · · 1
...

... . .
. ...

0 1 · · · 0
1 0 · · · 0




be the n-by-n anti-identity matrix. Because of the displacement structure of Toeplitz matrices
[19], we have

JnT−1
n Jn = T−1

n , JnLᵀ
nJn = Ln, JnL̂ᵀ

nJn = L̂n.

It follows that
T−1

n =
1
l1

(
LnLᵀ

n − L̂nL̂ᵀ
n

)
=

1
l1

(
Lᵀ

nLn − L̂ᵀ
nL̂n

)
.

Then we have

LnLᵀ
n − L̂nL̂ᵀ

n

=
1
2

[
(Ln + L̂ᵀ

n)(Lᵀ
n − L̂n) + (Lᵀ

n + L̂n)(Ln − L̂ᵀ
n)

]

=
1
2

[
(Ln + L̂ᵀ

n)(Lᵀ
n − L̂n) + Jn(Ln + L̂ᵀ

n)(Lᵀ
n − L̂n)Jn

]
.
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Therefore
T−1

n r = Re(z) + JnIm(z), (6)

where

z =
1

2l1

[
(Ln + L̂ᵀ

n)(Lᵀ
n − L̂n)

]
(r + iJnr), (7)

and Re(z) and Im(z) represent the real and imaginary parts of z respectively. We remark that
in (7), Ln + L̂ᵀ

n is circulant, and Lᵀ
n− L̂n is skew-circulant. Thus the cost for computing T−1

n r
is almost the same as computing one circulant and one skew-circulant matrix-vector product,
or roughly four n-length FFTs.

In order to construct T−1
n by the GSF, we have to solve the Toeplitz system (5). There are

many methods for solving the Toeplitz systems. For instance, the superfast direct methods with
O(n log2 n) complexity [21, 22] can be employed to solve the Toeplitz systems. Alternatively,
a large class of Toeplitz systems can be iteratively solved in O(n log n) [1, 2]. In this paper,
we exploit the preconditioned conjugate gradient (PCG) method with the Strang’s circulant
preconditioner [23] to solve (5). The Strang’s circulant preconditioner s(Tn) of Tn is defined as
a circulant matrix obtained by copying the central diagonals of Tn and bringing them around
to complete the circulant requirement. More precisely, the diagonals sk of s(Tn) are given by

sk =





tn+k, −n + 1 ≤ k < −bn/2c,
tk, −bn/2c ≤ k ≤ bn/2c,
tk−n, bn/2c < k ≤ n− 1,

where tk are the diagonals of Tn and bn/2c denotes the largest integer which does not exceed
n/2. The PCG with the Strang’s preconditioner has been widely studied for a large class of
Toeplitz systems; see [1, 2] for more details.

3. SHIFT-INVERT LANCZOS METHOD

3.1. Lanczos method

We briefly introduce the standard Lanczos method for approximating the vector y(τ) = e−τTnr.
An orthogonal basis of an m-dimensional Krylov subspace

Km(Tn, r) ≡ span {r, Tnr, T 2
nr, . . . , Tm−1

n r}
is constructed by the Lanczos process for a real symmetric matrix Tn as bellow:

Algorithm 1: Lanczos algorithm
1. Initialize: Compute r1 = r/ ‖r‖2
2. Iterate: For j = 1, 2, . . . , m do:

• dj,j := rᵀ
j Tnrj

• r̂j+1 := Tnrj − dj,jrj − dj−1,jrj−1

• dj+1,j := ‖r̂j+1‖2
• dj,j+1 := dj+1,j

• rj+1 := r̂j+1/dj+1,j

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 00:0–0
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4 H. K. PANG AND H. W. SUN

From Algorithm 1 we obtain the following relation [16]

TnRm = RmDm + dm+1,mrm+1e
ᵀ
m, (8)

where Rm = [r1, r2, . . . , rm] is the n-by-m matrix containing the orthonormal basis of
Km(Tn, r), Dm is the m-by-m symmetric tri-diagonal matrix which consists of the coefficients
dj,k, and em is the mth column of identity matrix of size m. We note that Rme1 = r1 and
Dm = Rᵀ

mTnRm. Therefore, Dm represents the projection of the linear transformation Tn onto
the subspace Km(Tn, r). Thus, we have the following approximation[16]

e−τTnr ≈ βRme−τDme1, β = ‖r‖2 .

When m ¿ n, the large matrix exponential e−τTn is replaced by a small matrix exponential
e−τDm . Furthermore, the small e−τDm can be quickly evaluated by the high-order rational
Chebyshev approximations [24, 10] or the scaling and squaring algorithm with Padé
approximation [25].

3.2. Shift-invert technique

However, it is shown in [11, 16] that when ‖τTn‖2 becomes larger, more iterations in the
Lanczos process may be needed to achieve a given accuracy for the approximation to the vector
e−τTnr. We note a fact that the exponential function is quickly decaying. Hence the vector
e−τTnr is mostly determined by the smallest eigenvalues of Tn and their corresponding invariant
subspaces. In order to guarantee the fast Lanczos process, van den Eshof and Hochbruck [17]
exploited the shift-invert technique which is usually employed to compute the small eigenvalues
[26].

Let In be the identity matrix of size n and σ denote the shift parameter. The shift-invert
Lanczos process [17] is presented as follows.

Algorithm 2: shift-invert Lanczos algorithm
1. Initialize: Compute r1 = r/ ‖r‖2
2. Iterate: For j = 1, 2, . . . , m do:

• dj,j := rᵀ
j (In + σTn)−1rj

• r̂j+1 := (In + σTn)−1rj − dj,jrj − dj−1,jrj−1

• dj+1,j := ‖r̂j+1‖2
• dj,j+1 := dj+1,j

• rj+1 := r̂j+1/dj+1,j

Analogous to (8), we have

(In + σTn)−1Rm = RmDm + dm+1,mrm+1e
ᵀ
m, Rᵀ

mRm = Im. (9)

Therefore, the approximation to e−τTnr is given by

e−τTnr ≈ βRme−τ [ 1
σ (D−1

m −Im)]e1 ≡ βRmg(Dm)e1, β = ‖r‖2, (10)

where g(x) = e−
τ
σ (x−1−1) with x ∈ (0, 1] and g(0) = 0. The error bound of the approximation

formula (10) has been estimated in [17].
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Theorem 1. [17] Let µ be a nonnegative number such that Tn−µIn is positive semi-definite.
Then

‖βRmg(Dm)e1 − y(τ)‖ ≤ 2βe−τµEm−1
m−1(σ̃),

where σ̃ = σ
τ(1+σµ) and

Em−1
m−1(σ̃) ≡ inf

q∈∏m−1
m−1

sup
t≥0

|q(t)− e−t|

with
∏j

k ≡ {p(t)(1 + σ̃t)−k|p ∈ Pj}, in which Pj denotes the set of all polynomials of degree
j − 1 or less.

According to Theorem 1, we note that the error of the approximation by the shift-invert
Lanczos method is independent of ‖τTn‖2. Only the smallest eigenvalue of Tn plays a modest
role in the form of µ. This is a very attractive advantage. In addition, a priori error bound and
the optimal choice of the shift parameter σ is achieved by evaluating the quantity Em−1

m−1(σ̃).
Nevertheless, the evaluation of the quantity Em−1

m−1(σ̃) is not easy. In the absence of insightful
analytical estimates, the authors in [17] locate the optimal value σ by numerically estimating
the quantity Em−1

m−1(σ̃) with τ = 1 and µ = 0. The actual values are tabulated as shown in
Table I. We remark that for the case τ 6= 1, one can choose σ as σoptτ , where σopt is guided by
Table I according to the required accuracy. For example, if we are interested in an accuracy of
about 10−4, we can consider Table I and decide to choose σ = 0.19τ .

Table I. Tabulated values in [17] of the shift-invert parameter σopt, and the corresponding value

Ej
j (σopt).

j Ej
j (σopt) σopt j Ej

j (σopt) σopt

1 6.7e-02 1.73e-00 11 4.0e-06 9.90e-02
2 2.0e-02 4.93e-01 12 1.6e-06 1.19e-01
3 7.3e-03 2.64e-01 13 6.1e-07 1.00e-01
4 3.1e-03 1.75e-01 14 2.5e-07 8.64e-02
5 1.4e-03 1.30e-01 15 1.0e-07 7.54e-02
6 4.0e-04 1.91e-01 16 4.0e-08 8.67e-02
7 1.6e-04 1.44e-01 17 1.6e-08 7.63e-02
8 6.5e-05 1.90e-01 18 6.6e-09 6.78e-02
9 2.4e-05 1.47e-01 19 2.7e-09 7.62e-02
10 9.7e-06 1.19e-01 20 1.1e-09 6.82e-02

Popolizio and Simoncini [15] also discussed the selection of the optimal shift-invert parameter
σ with a completely different strategy and got somehow similar results. In the numerical tests
in Section 4, we choose the optimal parameter σ = σoptτ , according to Table I.

3.3. Implementation for the symmetric TME

In the standard Lanczos process, only matrix-vector products Tnrj for j = 1, . . . , m are
involved. Given a Toeplitz matrix Tn, these products can be done by FFTs with O(n log n)
complexity; see Section 2. Nevertheless, in the shift-invert Lanczos process, we have to deal with
the matrix-vector multiplication (In + σTn)−1rj at each step. In [17], an inner-outer iteration
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6 H. K. PANG AND H. W. SUN

scheme is exploited in the shift-invert Lanczos process, where the product (In + σTn)−1rj

is implemented by an inner iteration. Therefore, the stopping criterion of the inner iteration
needs to be prescribed. In order to speed up the convergence of the inner iteration, a suitable
preconditioner should be constructed. Both choosing an appropriate stopping criterion and
constructing a good preconditioner in the inner iteration are not trivial. However, if Tn is a
symmetric positive semidefinite Toeplitz matrix, then In + σTn is symmetric positive definite
for σ > 0, and the GSF introduced in Section 2 provides an explicit representation of the
inverse of Toeplitz matrix In +σTn. Therefore, all products (In +σTn)−1rj can be carried out
by (6) and (7) with O(n log n) complexity. The shift-invert Lanczos method with the GSF for
the symmetric TME is given as below.

Algorithm 3: shift-invert Lanczos algorithm for symmetric TME
1. Select an optimal shift parameter σ from Table I
2. Solve the symmetric positive definite system (In + σTn)l = e1

3. Perform shift-invert Lanczos algorithm in which each multiplication
(In + σTn)−1rj is computed through GSF (6) and (7) by FFT

4. Compute the approximation ym(τ) = βRme−
τ
σ (D−1

m −Im)e1

In step 2 of Algorithm 3, we solve the linear Toeplitz system

(In + σTn)l = e1 (11)

by the PCG method with Strang’s preconditioner, which requires O(n log n) complexity [1, 2].
Once l is obtained, the products (In + σTn)−1rj for j = 1, . . . , m in step 3 can be computed
exactly through (6) and (7) by FFT with O(n log n) complexity. We remark that for each
iteration of shift-invert Lanczos process, the computational cost is almost the same as the
standard one; see Section 2 for details. In step 4, we need to compute the vector e−

τ
σ (D−1

m −Im)e1.
The calculation of the matrix exponential by some classical methods such as scaling and
squaring method [25] needs O(m3) operations. Recall that the matrix Dm generated in the
Lanczos process is a symmetric positive definite tri-diagonal matrix. Therefore, we can exploit
the following partial fraction expansion of the Chebyshev rational approximation to reduce
the computational cost:

q(z) = ω0 +
k∑

j=1

ωj

z − λj
, (12)

where λj ’s are the poles of q and ωj ’s are the corresponding coefficients [24, 10]. This
approximation is greatly enough to obtain a good working accuracy only for k = 14 [24].
By the partial fraction expansion of the Chebyshev rational approximation, the calculation in
step 4 becomes

e−
τ
σ (D−1

m −Im)e1 ≈ ω0e1 +
k∑

j=1

ωj

[ τ

σ
(D−1

m − Im)− λjIm

]−1

e1

= ω0e1 +
k∑

j=1

σωj [τIm − (τ + σλj)Dm]−1
Dme1.
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We note that Dm is a symmetric tri-diagonal matrix. Hence τIm− (τ +σλj)Dm is tri-diagonal
as well. Thus the cost of computing each term in the above equation is O(m), which implies
that the complexity of approximating the vector ŷ(τ) = e−

τ
σ (D−1

m −Im)e1 is about O(km). After
obtaining ŷ(τ), we calculate the vector βRmŷ in O(mn) operations. In summary, the total
computational cost in Algorithm 3 is of O(mn log n). We remark that m is in general much
smaller than n; see [15, 17] for instance.

4. NUMERICAL RESULTS

In this section we demonstrate the behavior of the shift-invert Lanczos algorithm for
approximating the vector y(τ) = e−τTnr with Tn being the symmetric positive semidefinite
Toeplitz matrix. All numerical experiments are tested by running MATLAB R2009b on a
Pentium(R) D 3.40GHz, 3.39GHz with 504MbRAM. In our experiments, we take the MATLAB
command “expm” as the true value of y(τ) except for Example 2, where the true solution is
analytically given. In all tables, “n” denotes the matrix size, “tol” represents the tolerance of
the relative error ‖y(τ)− ym(τ)‖2 / ‖y(τ)‖2 < tol, where ym(τ) is the numerical approximation
to y(τ). Symbols “Stand” and “SI” refer to the standard Lanczos method and the shift-invert
Lanczos method, respectively. The shift parameter σ = σoptτ , where σpot is chosen from
Table I according to the required accuracy. The partial fraction expansion of the Chebyshev
rational approximation (12) is used to compute the small projection matrix exponential in
both methods.

Example 1. We consider a symmetric positive definite Toeplitz matrix Tn whose diagonals
tk are given by [2]

tk =
1
2π

∫ π

−π

x4e−ikxdx, k = 0,±1,±2, . . . ,±(n− 1).

The vector r is chosen to be all ones. We use the standard Lanczos method and the shift-invert
Lanczos method to approximate the vector e−τTnr, respectively. Note that ‖Tn‖2 keeps almost
unchanged regardless of the matrix size n in this example. Hence we can fix n = 1024 and vary
the value τ . The number of iterations for various τ and final accuracies “tol” are reported in
Table II.

Table II. Iteration numbers of shift-invert Lanczos method and standard Lanczos method for n = 1024
in Example 1.

τ tol = 10−4 tol = 10−7 tol = 10−9

SI Stand SI Stand SI Stand
1 6 21 13 33 17 40
10 7 67 14 102 19 120
100 7 213 14 319 19 375
1000 7 668 14 976 19 1132

From Table II we see that the number of iterations by the shift-invert Lanczos method is
much smaller than the one by the standard Lanczos method, especially for the large τ ; i.e., the

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 00:0–0
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8 H. K. PANG AND H. W. SUN

large ‖τTn‖2. Moreover, for the shift-invert Lanczos method, the iteration numbers stay almost
unchanged. This fact illuminates that the convergence of the shift-invert Lanczos method is
actually independent of ‖τTn‖2, while the standard Lanczos method needs more iterations as
‖τTn‖2 increases.

As a comparison, we compute the vector ŷ(τ) = e−
τ
σ (D−1

m −Im)e1 by the MATLAB command
“expm”. Note that the complexity by “expm” is of order O(m3), while that by the Chebyshev
rational approximation is O(m). Numerical results are displayed in Table III, where “direc”
means that ŷ(τ) is computed directly by the MATLAB command “expm” and “Chev” means
that by the Chebyshev rational approximation. From Table III, we see that the CPU time by
the Chebyshev rational approximation is less than the one by the MATLAB command “expm”
directly. The advantage by the Chebyshev rational approximation is even more evident for the
big size m.

Table III. Comparison of iteration numbers and CPU times (in parentheses, unit second) by the
Chebyshev rational approximation and by the MATLAB command to compute the small projection

matrix exponential in Example 1.

τ tol = 10−9

SI(direc) SI(Chev) Stand(direc) Stand(Chev)
1 17(0.0010) 17(0.0005) 40(0.0016) 40(0.00063)
10 19(0.0011) 19(0.0005) 120(0.0085) 120(0.0010)
100 19(0.0011) 19(0.0005) 375(8.6224) 375(0.0023)
1000 19(0.0011) 19(0.0005) 1132(182.0566) 1132(0.0068)

Example 2. We consider a heat equation which is an example in [27]. Assume an iron
bar, of length 50cm, with specific heat c = 0.437J/(gK), density ρ = 7.88g/cm3, and thermal
conductivity κ = 0.836W/(cmK), is insulated except at the end and has the initial temperature

ψ(x) = 5− 1
5
|x− 25| ,

where ψ(x) is given in degree Celsius. We also assume that, at time t = 0, the ends of the bar
are placed in an ice bath (0 degrees Celsius). Now we compute the temperature distribution
after 60 and 300 seconds. This problem satisfies the heat equation

ρc
∂u

∂t
= κ

∂2u

∂x2
, 0 ≤ x ≤ 50, t > 0, (13)

subject to the initial and boundary conditions

u(x, 0) = ψ(x), 0 ≤ x ≤ 50,

u(0, t) = 0, u(50, t) = 0, t > 0.

The analytical solution of (13) is given by [27]:

u(x, t) =
∞∑

j=1

aj(t) sin
(

jπx

50

)
, aj(t) =

40 sin(jπ/2)
π2j2

exp
(
−κj2π2

502ρc
t

)
. (14)
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Numerically solving (13) by cental difference method leads to a matrix exponential problem

û(t) = e−tTnu0,

where û(t) = (û1(t), û2(t), . . . , ûn(t))ᵀ is an approximation to the exact solution u(x, t) at
grid points xj , j = 1, 2, . . . , n, Tn is a symmetric positive definite Toeplitz matrix, and
u0 = (ψ(x1), ψ(x2), . . . , ψ(xn))ᵀ is the initial vector. We approximate û(t) at time τ by the
standard Lanczos method and the shift-invert Lanczos method, respectively. In our tests, the
iteration is stopped when the relative error between the iteration solution ûm and the true
solution u no longer decreases. Here we take the first 150 terms of the series solution (14) to
be the true solution u for comparison. Table IV shows the iteration numbers and CPU times
(in parentheses, unit second) of the shift-invert Lanczos method and the standard Lanczos
method for different numbers of spacial grid points n and times τ (unit second). The column
labeled “err” stands for the relative error of ‖u− ûm‖2 / ‖u‖2 ≤ err, which is a little different
from “tol” in Example 1.

Table IV. Iteration numbers and CPU times (in parentheses, unit second) for the shift-invert Lanczos
method and the standard Lanczos method in Example 2.

n τ = 60 τ = 300
err SI Stand err SI Stand

128 7.88e-05 9(0.0036) 55(0.0101) 6.71e-05 9(0.0036) 64(0.0115)
256 1.97e-05 11(0.0051) 115(0.0228) 1.68e-05 9(0.0042) 128(0.0257)
512 4.92e-06 13(0.0098) 242(0.0789) 4.19e-06 9(0.0075) 255(0.0833)
1024 1.23e-06 13(0.0165) 479(0.2662) 1.05e-06 9(0.0132) 509(0.2843)
2048 3.08e-07 14(0.0493) 980(1.4535) 2.62e-07 9(0.0309) 1020(1.4205)
4096 7.69e-08 16(0.0658) 1993(2.7482) 6.54e-08 10(0.0361) 2041(3.3108)
8192 1.92e-08 16(0.1735) > 3500 1.67e-08 10(0.1134) > 4000

From Table IV we see that the shift-invert Lanczos method needs fewer iterations and
CPU times to reach the final required accuracies than those of standard Lanczos method. In
particular, for large spatial grid numbers, the standard Lanczos method becomes unacceptable
for its very great iteration numbers, while the shift-invert Lanczos method still works well.

Example 3. We consider the Volterra-Wiener-Hopf integral equation of the second kind [4]
as an application of the proposed algorithm. The integral equation is given as follows,





u(x, t) = f(x, t) + λ

∫ t

0

∫ ∞

0

K0(|x− ξ|)u(ξ, η)dξdη,

0 < x < ∞, 0 ≤ t < ∞, λ < 0,

(15)

where λ is a constant, f(x, t) is a given function, and K0(x) =
∫∞
0

cos ξ√
x2+ξ2

dξ is the Macdonald

function [4], or the modified Bessel function of the second kind [28], which has the property that
K0(x) ' ln(2/γx) (γ is the Euler constant) in the neighborhood x → 0, and K0(x) =

√
π/2x,

(x →∞).
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To solve (15) numerically, we discretize the x-domain with a uniform mesh size ∆x and
the grid number n. Then the domain of x is truncated to be (0,∆x · n]. Correspondingly, the
infinity domain of integral in the right hand side of (15) is also truncated to be (0,∆x · n].
By exploiting the rectangle rule with the same uniform mesh size ∆ξ = ∆x for the truncated
integral, we obtain the following equation

û(t) = f(t) + λ

∫ t

0

Tnû(η)dη, (16)

where û(t), analogous to the notation in Example 2, is an approximation to the exact solution
u(x, t) at the grid points j∆x, j = 1, . . . , n, f(t) = (f(∆x, t), . . . , f(n∆x, t))ᵀ, and Tn comes
from the discretization of truncated integral with diagonals

tk =





K0(k∆x), k = ±1,±2, . . . ,±(n− 1),

1
∆x

∫ ∆x

0

ln(2/γx)dx, k = 0.

We note that Tn is a symmetric positive definite Toeplitz matrix [4, 29]. In our tests, we take
λ = −10 and f(x, t) = 10x2e−x/2 for simplicity. Therefore the approximation solution û(t) is
expressed as

û(t) = etλTnf0,

where f0 = f(0) is the initial vector.
In the following, we approximate etλTnf0 at the time τ by the shift-invert Lanczos method

and the standard Lanczos method, respectively. In all experiments, we fix the mesh size
∆x = 0.01. The iteration numbers for various dimensions n, times τ and final tolerances
are summarized in Table V. From Table V, we see that the iteration numbers of the shift-
invert Lanczos method are smaller than those of the standard Lanczos method. In addition,
we also take into account the whole computational costs, measured in the number of n-length
FFTs, in Figure 1 for n = 512 and τ = 20. All the numerical results in Table V and Figure 1
show that the shift-invert Lanczos method outperforms the standard one.

We now illustrate that the proposed shift-invert Lanczos method by the GSF through
(6) and (7) to handle the inverse really reduces the computational cost compared with
other implementations, such as the Cholesky factorization. In Algorithm 2, the products
(In + σTn)−1rj must be computed in order to implement the shift-invert Lanczos process. If
the Cholesky factorization is used to decompose the matrix In + σTn, then the computational
cost is O(n3). Having the factorization in hand, we compute (In +σTn)−1vj at each step of the
Lanczos process by solving two triangular systems, which require O(n2) operations. However,
by the GSF to calculate the products (In + σTn)−1rj , we need to solve a Toeplitz system (11)
once and for all, which can be done by the PCG method in O(n log n) complexity. Then what
remains is to compute (In +σTn)−1rj at each step of the Lanczos process by FFT through (6)
and (7), where the complexity is about four n-length FFTs. The CPU times of the standard
Lanczos method, and shift-invert Lanczos method with GSF and Cholesky factorization are
reported in Table VI. The mark “LLT” indicates the Cholesky factorization. From Table VI,
we see that the shift-invert Lanczos method with GSF is less time-consuming than both the
standard Lanczos and the shift-invert Lanczos method with Cholesky factorization.
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Table V. Iteration numbers of the standard Lanczos method and shift-invert Lanczos method for
various dimensions, time τ and final tolerances in Example 3.

n τ tol = 10−4 tol = 10−6

SI Stand SI Stand
10 13 25 17 30

256 20 13 33 18 39
30 13 39 18 46
10 13 33 18 38

512 20 13 43 18 50
30 13 51 19 60
10 13 40 18 47

1024 20 13 54 18 63
30 13 64 19 73
10 13 48 18 57

2048 20 14 65 19 77
30 14 78 19 94
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Figure 1. Number of n-length FFTs versus relative error for n = 512, τ = 20, and ∆x = 0.01 in
Example 3.

5. Concluding remarks

In this paper we employ the shift-invert Lanczos algorithm to approximate the symmetric
positive semidefinite TME and apply the proposed method to solve the Volterra-Wiener-Hopf
integral equation (15). The GSF (4) is exploited such that we can avoid using the inner iteration
as [17] for implementing the shift-invert Lanczos process. Moreover, the complexity is reduced
to O(n log n) by the Toeplitz properties. Numerical results are performed to show the efficiency
of the proposed method. We remark that the formulae (6) and (7) is no longer suitable for the
nonsymmetric case. More discussions for the nonsymmetric TME are studied in [30].
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Table VI. CPU times (in seconds) of standard Lanczos method, shift-invert Lanczos method with GSF
or Cholesky decomposition for τ = 20 and ∆x = 0.01 in Example 3.

tol = 10−4 tol = 10−6

n Stand SI Stand SI
GSF LLT GSF LLT

256 0.0063 0.0058 0.0254 0.0077 0.0068 0.0332
512 0.0107 0.0083 0.1272 0.0127 0.0101 0.1603
1024 0.0276 0.0148 0.6571 0.0357 0.0178 0.8091
2048 0.0524 0.0352 2.9190 0.0682 0.0413 3.5170
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