Dendritic Neuron Model-Based Learning Algorithms and Applications

Abstract

An artificial neural network (ANN) that mimics the information processing mechanisms and procedures of neurons in human brains has achieved great success in many fields, e.g., classification, prediction and control. However, traditional ANNs suffer from many problems, such as the hard understanding problem, the slow and difficult training problem and the difficulty to scale them up. These drawbacks motivate us to develop a new dendritic neuron model (DNM) by considering the nonlinearity of synapses, not only for a better understanding of a biological neuronal system, but also for providing a more useful method for solving practical problems. To achieve its better performance for solving problems, six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy and population-based incremental learning are for the first time used to train it. The best combination of its user-defined parameters has been systemically investigated by using the Taguchi’s experimental design method. The experiments on fourteen different problems involving classification, approximation and prediction are conducted by using a multi-layer perceptron and the proposed DNM. The results suggest that the proposed learning algorithms are effective and promising for training DNM and thus make DNM more powerful in solving classification, approximation and prediction problems.

Speaker

Prof. Mengchu ZHOU
The Helen and John C. Hartmann Department of Electrical and Computer Engineering
New Jersey Institute of Technology
Newark, NJ 07102, USA

Date & Time

15 Nov 2018 (Thursday) 11:00 - 12:00

Venue

E11-4045 (University of Macau)

Organized by

Department of Computer and Information Science

Biography

MengChu Zhou received his B.S. degree in Control Engineering from Nanjing University of Science and Technology, Nanjing, China in 1983, M.S. degree in Automatic Control from Beijing Institute of Technology, Beijing, China in 1986, and Ph. D. degree in Computer and Systems Engineering from Rensselaer Polytechnic Institute, Troy, NY in 1990. He joined New Jersey Institute of Technology (NJIT), Newark, NJ in 1990, and is now a Distinguished Professor of Electrical and Computer Engineering. His research interests are in Petri nets, intelligent automation, Internet of Things, big data, web services, and intelligent transportation. He has over 800 publications including 12 books, 460+ journal papers (360+ in IEEE transactions), 12 patents and 28 book-chapters. He is the founding Editor of IEEE Press Book Series on Systems Science and Engineering and Editor-in-Chief of IEEE/CAA Journal of Automatica Sinica. He is a recipient of Humboldt Research Award for US Senior Scientists from Alexander von Humboldt Foundation, Franklin V. Taylor Memorial Award and the Norbert Wiener Award from IEEE Systems, Man and Cybernetics Society. He is a life member of Chinese Association for Science and Technology-USA and served as its President in 1999. He is VP for Conferences and Meetings, IEEE Systems, Man and Cybernetics Society. He is a Fellow of The Institute of Electrical and Electronics Engineers (IEEE), International Federation of Automatic Control (IFAC), American Association for the Advancement of Science (AAAS) and Chinese Association of Automation (CAA).