
 1

University of Macau

Computer and Information Science Department

 CISB251 – Object-Oriented Analysis and Design Patterns

Syllabus

2nd Semester of Year 2

Part A – Course Outline

Elective course in Computer Science

Catalog description:
(2-2) 3 credits. The course discusses object-oriented analysis and design using Unified Modeling Language (UML). The

main contents include use case diagram, class diagram, sequence diagram, state diagram, and activity diagram of UML.

Object Constraint Language (OCL) and design patterns are also introduced. The students are asked to analyze and design

their course project systems on teams with UML CASE tool.

Course type:
Theoretical with substantial laboratory/practice content

Prerequisites:
 None

Textbook:
 Craig Larman: Applying UML and Patterns, 3rd ed. Prentice-hall, 2005.

References:
 J. Arlow and I. Neustadt: UML2 and the Unified Process: Practical Object-Oriented Analysis and Design,

 2nd ed. Addison Wesley, 2005.

 G. Booch, J. Rumbaugh, and I. Jacobson: The Unified Modeling Language User Guide, Addison-Wesley, 1998.
 E. Gamma, R. Helm, R. Johnson and J. Vlissides: Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

Major prerequisites by topic:
1. Basic concepts of object-oriented programming.

Course objectives:
1. Analyze and design with object-oriented method in UML [a, b, c, d]

2. Introduce OCL and design pattern concepts [a, b, c, d]

3. Apply object-oriented method to the course project system analysis and design [a, b, c, d]

Topics covered:
1. Introduction of OOA/OOD with UML (4 hours): Introduce the concepts of object-orientation, object-oriented

analysis and design, Unified Modeling Language (UML). In addition, the concepts of software development process

and activities, and Unified Development Process are also introduced. A case study is used to illustrate the overview

of object-oriented analysis and design with UML.

2. Use Case Model (4 hours): Analyze and specify the requirements model, including use case diagram, use case

definition, system operation sequence diagram, activity diagram, operation contract with pre and post conditions,

and conceptual class diagram by illustrating with case studies.

3. Static Design Model (4 hours): Design system static model, including design class diagram, identification of

classes, attributes and methods, identification of generalization, aggregation, composition, and dependency relations,

defining associations with multiplicities and constraints by illustrating with case studies.

4. Dynamic Design Model (6 hours): Design system dynamic model, including design sequence diagram, activity

diagram and state diagram, mapping design to codes by illustrating with case studies.

5. OCL and Design Patterns (4 hours): Introduce the concepts of Object Constraint Language (OCL) and design

patterns. OCL is used to specify pre, post conditions and invariants by illustrating with examples. The GRASP

patterns and some GoF patterns are discussed, such as designing objects with responsibility, expert pattern, creator

pattern, controller, the concepts of low coupling and high cohesion, façade and adapter patterns.

 2

Class/laboratory schedule:

Timetabled work in hours per week
No of teaching

weeks
Total
hours

Total
credits

No/Dur
ation of
exam

papers
Lecture Tutorial Practice

2 2 Nil 14 56 3
2 / 2
hours

Student study effort required:

Class contact:

Lecture 28 hours

Tutorial 28 hours

Other study effort

Self-study 30 hours

Homework assignment 10 hours

Project / Case study 20 hours

Total student study effort 116 hours

Student assessment:
Final assessment will be determined on the basis of:
Homework 20% Project 30%
Mid-term 20% Final exam 30%

Course assessment:
The assessment of course objectives will be determined on the basis of:

 Homework, project and exams
 Course evaluation

Course outline:

Weeks Topic Course work

1,2

Introduction of OOA/D with UML
The concepts of object-orientation, object-oriented analysis and design,
UML, and applying OOA/OOD with UML into a practical case study,
software development process, process activities, and unified process.

Introduction of

project

3,4

Use Case Model
Use case model, use case diagram, use case definition, system operation
sequence diagram, activity diagram, operation contract with pre and post
conditions, and conceptual class diagram, and case studies.

Assignment#1
Assignment#2

Use case
model of
project

5, 6

Static Design Model
Design class diagram, identification of classes, attributes and methods,
generalization, aggregation, composition, and dependency relations,
association, multiplicity and constraint.

Assignment#3
Static design

model of project

7,8,9,10

Dynamic Design Modeling
Design sequence diagram, activity diagram and state diagram, mapping
design to codes, component and deployment diagrams, and case studies.

Assignment#4
Mid-test

11,12

OCL and Design Patterns
OCL is introduced for specifying pre, post conditions and invariants
formally. And the concepts of design patterns are introduced, such as
designing objects with responsibility, expert pattern, creator pattern,
controller, low coupling and high cohesion, façade and adapter patterns.

Assignment#5
Dynamic design
model of project

13 Project Presentation and Report
Course project

report

 3

Contribution of course to meet the professional component:
This course prepares students to work professionally in the area of software development.

(a) An ability to apply knowledge of computing and mathematics appropriate to the programme outcomes

and to the discipline

(b) An ability to apply knowledge of a computing specialisation, and domain knowledge appropriate for the

computing specialisation to the abstraction and conceptualisation of computing models

(c) An ability to analyse a problem, and identify and define the computing requirements appropriate to its

solution

(d) An ability to design, implement, and evaluate a computer-based system, process, component, or program

to meet desired needs with appropriate consideration for public health and safety, social and

environmental considerations

Relationship to CS program objectives and outcomes:
This course primarily contributes to Computer Science program outcomes that develop student abilities to:

Relationship to CS program criteria:

Criterion DS PF AL AR OS NC PL HC GV IS IM SP SE CN

Scale: 1 (highest) to 4 (lowest) 2 2 3 1

Discrete Structures (DS), Programming Fundamentals (PF), Algorithms and Complexity (AL), Architecture and Organization (AR),

Operating Systems (OS), Net-Centric Computing (NC), Programming Languages (PL), Human-Computer Interaction (HC), Graphics

and Visual Computing (GV), Intelligent Systems (IS), Information Management (IM), Social and Professional Issues (SP), Software

Engineering (SE), Computational Science (CN).

Course content distribution:

Percentage content for

Mathematics Science and engineering subjects Complementary electives Total

0% 100% 0% 100%

Coordinator:
Prof. Zhiguo Gong

Persons who prepared this description:

Prof. Xiaoshan Li

 4

Part B General Course Information and Policies

2nd Semester of Year 2
Instructor: Prof. Xiaoshan Li Office: E11-4015

Office Hour: by appointment Phone: 4471

Email: xsl@umac.mo

Time/Venue: Tue. 11:00am-13:00pm, Fri. 11:00am-13:00pm, Jan.-May, 2015

Grading Distribution:

Percentage Grade Final Grade Percentage Grade Final Grade

100 – 93 A 92 - 88 A

87 – 83 B+ 82 - 78 B

77 – 73 B 72 - 68 C+

67 – 63 C 62 - 58 C

57 – 53 D+ 52 - 50 D

below 50 F

Comment:

The objectives of the lectures are to explain and to supplement the text material. Students are responsible for

the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course

should read the assignments prior to the lecture and should work all homework and project assignments. You

are encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework and Course Project:

The project is the important part of this course. Through the project, students can apply the course contents

they learn to the practical software system analysis and design. It will be very helpful for them to improve the

analysis and design ability of object-oriented method. Project progress stage reports are requested to be

delivered as homework assignments round two or three weeks with the progress of course contents course,

and are presented, discussed and commented during tutorial classes and in instructor’s office outside of class.

Finally, each team should deliver their final course project report at the end of semester before final exam.

 The requirements will be announced and discussed in class.

 The students’ progress on their project will be discussed in the tutorial class and instructor’s office.

 The project will be presented twice formally at the middle and end of semester, and the final project

report should be delivered before the final exam.

Note

 Recitation session is important part of this course and attendance is strongly recommended.

 Check UMMoodle (https://ummoodle.umac.mo/) for announcement, homework and lectures. Report any

mistake on your grades within one week after posting.

 No make-up exam is given except for CLEAR medical proof.

 Cheating is absolutely prohibited by the university.

mailto:xsl@umac.mo

 5

Appendix - Measurement Dimensions and Rubric for Program

Outcomes (a), (b), (c), and (d)

(a) An ability to apply knowledge of computing and mathematics appropriate to the

programme outcomes and to the discipline

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to apply

knowledge of

computing to the

solution of complex

computing problems.

Students understand the

computing principles, and

their limitations in the

respective applications. Use

the computing principles to

formulate and solve

complex computing

problems.

Students understand the

computing principles, and

their limitations in the

respective applications. But

they have trouble in

applying these computing

principles to formulate and

solve complex computing

problems.

Students do not understand

the computing principles,

and their limitations in the

respective applications. Do

not know how to apply the

appropriate computing

principles to formulate and

solve complex computing

problems.

 6

(b) An ability to apply knowledge of a computing specialisation, and domain knowledge

appropriate for the computing specialisation to the abstraction and conceptualisation of

computing models

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to apply

knowledge of a

computing

specialisation, and

domain knowledge to

analyse and abstract

complex computing

models

Students understand the

computing specialisation,

and domain knowledge.

They can also analyze and

abstract complex computing

models.

Students understand the

computing specialisation,

and domain knowledge. But

they have trouble in

analyzing and abstracting

complex computing models.

Students have trouble in

understanding the

computing specialisation,

and domain knowledge,

and do not know how to

analyze and abstract

complex computing

models.

2. An ability to apply

knowledge of a

computing

specialisation, and

domain knowledge to

conceptualize complex

computing models

Students understand the

computing specialisation,

and domain knowledge.

They can also conceptualize

complex computing models.

Students understand the

computing specialisation,

and domain knowledge. But

they have trouble in

conceptualizing complex

computing models.

Students have trouble in

understanding the

computing specialisation,

and domain knowledge,

and do not know how to

conceptualize complex

computing models.

 7

(c) An ability to analyse a problem, and identify and define the computing requirements

appropriate to its solution

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to

understand problem

and identify the

fundamental

formulation

Students understand

problem correctly and can

identify the fundamental

formulation

Student understand problem

correctly, but have trouble

in identifying the

fundamental formulation

Students cannot understand

problem correctly, and they

do not know how to

identify the fundamental

formulation

2. An ability to choose

and properly apply the

correct techniques

Students know how to

choose and properly apply

the correct techniques to

solve problem.

Students can choose correct

techniques but have trouble

in applying these techniques

to solve problem.

Students have trouble in

choosing the correct

techniques to solve

problem.

 8

(d) An ability to design, implement, and evaluate a computer-based system, process, component,

or program to meet desired needs with appropriate consideration for public health and

safety, social and environmental considerations

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to design,

implement, and

evaluate a computer-

based system, process,

component, or program

Students understand how to

properly design, implement

and evaluate a computer-

based system, process,

component, or program

Students understand how to

design and implement a

computer-based system,

process, component, or

program, but have trouble in

evaluating it.

Students do not know how

to design, implement, and

evaluate a computer-based

system, process,

component, or program

